Choose Solutions, Not Facts

19 04 2011

State and federal budgets are headed for the cliff to varying degrees with few exceptions.  Here in Wisconsin, we’ve had the Battle Royale fight to the death cage match with the repubs on one side and the unions on the other while the dems were hiding out in a witness protection plan.

Meanwhile at the federal level, we are on a dangerous trajectory unseen in my lifetime.  People have whined about the deficit and debt since my adolescence – the Miracle on Ice days against the Soviet Union.  I kept saying, “It’s not a problem.  It’s not a problem.”  Why?  Because the debt as a percentage of our economy was reasonable, and flat but very few people consider this metric – the one that matters most.  They just clobber each other over the head and call each other names and we have Jay Leno fodder like “pay-go”.

However, this all changed since the meltdown Lehman Brothers in the fall of 2008.  The debt as a percentage of our economy really IS becoming a major concern.  We are staring at $1.6 trillion deficits for as far as the eye can see.  Personally, I think the word trillion should be banned because it sounds inconsequential.  How about $1.6 million million, or $1,600 billion?

Do we cut spending, take away grandma’s pharmaceuticals, sell her home, and set her and her senile dog up in a tent under the bridge, or do we fleece “the rich”.  See, I’ve always believed when politicians talk about “the rich” they mean households with incomes of two freshly college-educated people, say an engineer and a nurse or a school teacher and pharmacist.

As a rational person, I did a little Saturday morning research and some pretty simple math to prove my point.  The chart below containing data from the IRS paints a pretty clear and grim picture for those expecting a free ride from “the rich”.  What it shows is total incomes and numbers of returns (households) by income bracket.  The average income of those in the top 1% is $1.2 million and the next 4% the average drops sharply to $220,000.  My analysis goes like this: suppose we just took everything these people made above $100k, $250k, and so on.  Taking everything in excess of $100k from the top 10% of earners is “only” $2.4 trillion – $800 billion more than the deficit.  I.e., if the government confiscated all household income above $100k, we would have an $800 billion surplus.  But almost no one in this country considers $100k to be wealthy.

So let’s move to $250k, which apparently according to the President is the line between the rich and not rich because he’s said ten thousand times he’s not touching the piggy bank of anyone making less than $250k.  Well guess what; if we take everything in excess of $250k, it doesn’t even balance the budget.  Everything!  Of course if we tried this, no one would make more than $250k.  If we took 90%, there would be very little income over $250k and so on.  Lastly, if we take everything in excess of $1 million, you know, stick it to the rich, it has practically a negligible impact on the deficit.  Hello Pesky!  And remember, this is EVERYTHING above $1 million.

I conclude with facts that raising taxes on “the rich” is akin to fixing the weather-stripping on a large commercial building that is hemorrhaging energy waste.

And so it goes for energy savings.  One has to ask themselves, what can I expect for savings to pay for a renovation I want?  Start by considering you can’t save more than the building or a piece of equipment is using.  Sound pretty ridiculously simple?  Some end users could learn from this.

If you are on a buildings and grounds committee, you should know a few basic rules of thumb.  I will use schools as an example here.  New construction costs around $150 per square foot.  The cost of lighting and HVAC for the building is probably 20-30% of that cost with HVAC costing $20-$35 per square foot.  People should consider their own energy costs per square foot, but it’s most likely going to be in the $1-$2 per square foot per year.

So put some numbers together to get a SWAG (scientific wild ass guess) of what your return on investment may be for an HVAC system replacement.  At Michaels we call such a limit of savings or return on investment a bracket or a bracket calculation.  For example, if you are paying $1.50 per square foot per year and a new HVAC system costs $30 per square foot, your best possible return is a 20 year payback – that is if you save ALL the energy being consumed now.  It is safe to say that actual payback is twice that long.  Ditto for adding a variable speed drive to a pump.  One of our engineers may consider a variable speed drive for a pump and I may pull out my calculator and within thirty seconds conclude it’s never going to fly.  The motor uses $750 electricity at most, and installing a drive is going to be at least $2,000.  After screwing around with more detailed data and analysis, it will be a 12 year payback and that’s going nowhere.

Imagine being hired to analyze options for an HVAC replacement, considering several alternative systems.  Wouldn’t you know it! The payback was infinite because the new system would cost more to operate in energy than the 90 year old steam system that provides no ventilation and no air conditioning.  The board is shocked at the price tag and doesn’t want to pay for the study!  They were “misled”.  Wha?  I would call it an introduction to the real world, circa 2011.

This is like going to the optometrist because the patient can’t see very well, thinking they need a $100 pair of glasses.  The doctor does his series of tests and he diagnoses cataracts.  The exam costs $150 and the cataract surgery costs $7,000.  Otherwise, the eyes are fine.  The patient is enraged and refuses to pay for the exam.  The patient still wants the eyeglasses – prescribed by said optometrist!  This is a perfect allegory to a real story.

You may be able to choose among solutions, but you cannot rewrite history, pick your own reality, or defy the arithmetic.


Checking in after my rant No Brazil Syndrome, how many radiation-related deaths have occurred as a result of Fukushima’s damage sustained in March 11’s massive earthquake?  Zero.  Meanwhile, in the same period, probably more than 3,000 Americans have died in car crashes and deaths from the tsunami in Japan alone exceed 13,000.

Like most other things, you (you) have infinitely more control over your well being than that thing poses.  Stay out of the sun or wear strong sunscreen, don’t smoke, keep your BMI within better than recommended limits, skip the red meat, wear your seatbelt/helmet, exercise, don’t break the speed limit, check your cholesterol and blood pressure, get your colonoscopies…

written by Jeffrey L. Ihnen, P.E., LEED AP

Don’t Mess with the Stapler

5 04 2011

We, as an industry, have our work cut out for us in coming years.

Months ago an industrial energy efficiency consortium that puts on training events held a two-day workshop on motors.  Motors!  Talking about the common Swingline stapler for two days would be more interesting.  The efficient motor uses less energy in the amount of the difference in the reciprocals of old minus new.  I.e., (1/eff – 1/eff).  Multiply by nameplate horsepower then by 0.5 (don’t ask, just do it) then by annual hours of use.  Bingo!  There are your savings.  Two days!

There are more complex issues that may not be addressed.  One of these issues is, what is it that makes a motor more efficient?  Tighter windings and closer tolerances – I think.  I don’t care because the impacts are infinitesimally small compared to what end users ought to be doing.  This results in less slip, which means the efficient motor actually runs faster.  Here is the dirty secret:  An efficient motor may be three percent more efficient but as it runs faster on a constant speed fan or pump it would increase shaft power – power transferred to the impeller / fan wheel by 9%.  Increasing the load by 9% but doing it more efficiently by 3% does not save energy.  Quite the opposite, actually.  If one changed sheaves, which isn’t going to happen, or if the equipment is properly controlled by a variable speed drive, it may actually save energy.

On the whole, it is highly possible that efficient motors result in greater energy consumption.

Recently, we were meeting with regulatory staff and the topics of lighting and motors surfaced.  Apparently, the investor owned utilities are clinging to, and concocting ways to hold onto savings for efficient motors and lighting; minimum efficiencies for which thanks to the benevolent federal government are being ratcheted up by fiat.  Clinging like Milton and his beloved stapler.

Give me a break.  If programs are still relying on savings from motors, there is a major problem in Denmark.  How about considering what the motor is turning?  The load on the motor could probably be reduced by 50%, while they are going to “save” 3% with a stupid new motor that runs faster and uses more energy.

I can see what is going to happen.  Some utilities are going to whine to the regulators that all their savings opportunities are going away because the feds have ratcheted up standards.  Regulators should respond with the equivalent of “Gee, that’s really unfortunate.  Since you’ve installed all these motors that use more energy over the years, I think we will raise your savings target by one additional percentage point.”  Ironically, I learned that negotiating tactic from a utility.  “You think the penalty is too harsh?  I’ll add 50%.  Would you like to counter that again?”

Ironically, on the same day as the meeting with the regulatory staffer, I received information I had asked for purposes of evaluating the potential for retro-commissioning of a mid-size high school just over 250,000 square feet.  I had asked for the energy records.  The facility is using at least 50% more electricity than it should and 50% more natural gas than it should – easy.  It is using as much energy off peak as on peak.  The power factor is lousy.  With these symptoms, I bet I can call three top, major energy saving opportunities given the types of systems they have.  I’ll just leave it at that because it’s intellectual property available for a price.

I’ll bet my house that we can reduce their energy consumption by at least 30% with well under a five year payback.  It could be one year or three years, depending on what needs to happen to fix the causes of the waste.

Trust me when I tell you, efficient motors and new lighting will not be part of the 30% solution.


On the nearly useless EE front, see which internet browsers are most efficient.   However, the impact on battery life is worth noting.  If you don’t use the overpriced internet during air travel, kill the browser.

The president says federal vehicles will all use “clean” fuel by 2015.  What does that mean?  One percent of the fuel will come from reconstituted plastic grocery bags recovered from a landfill?   Meanwhile, the federal vehicles excluding military, guzzled 7% more gasoline than the previous year, using 322 million gallons of gasoline.  Congratulations.  I’m always pleased to be told how to live by hypocrites to whom no rules apply.

written by Jeffrey L. Ihnen, P.E., LEED AP

Burnin Down the House

29 03 2011

Some things in life you have to fully commit yourself to or they will end in colossal failure, or immeasurably small success.  When I was a kid I played Evel Knievel by setting up ramps of 2×12 planks and concrete blocks.  I jumped my bike across maybe a five foot “canyon”.  Note, this was before mountain bikes.  Gary Fischer may have been developing his mountain bike in his garage but there was nothing available on the market.  I used a purple girl’s bike, single speed, no shock absorbers, no foot clips, and certainly no helmet.  Why the girl’s bike?  The consequences of failure on a boy’s bike were brutal.  Hitting the ramp at half speed would end in disaster.  I’m sure similar consequences exist for crazy stuff like ski jumping, doing flips on/with anything.  Even when you have an easy play in sports, you have to let it fly or you’re bound to choke.  There are many things you can’t half do.

Fifteen years ago utility deregulation was the rage.  Deregulation has been a boon to consumers in many industries including airlines, and telecommunications.  It’s been brutal to product and service providers that weren’t prepared for the “free market”.  Plenty of airlines went bust and are gone; Eastern, TWA, PanAm, and Braniff to name a few.  It did allow innovative companies like Southwest to enter the market and develop new niches and business models.

Electric utility deregulation had varied results, mostly in different shades of failure.  The darkest shade of failure, pitch black, was probably California where, you guessed it, they hit the ramp at half speed and crashed and burned badly.  They deregulated wholesale prices but capped retail prices to end users.  The fools who approved this are clueless with respect to how markets work.  You have to have price response to the point of use or the system will collapse.  Healthcare anyone?  Consumers kept buying relatively cheap power, while companies like NRG Energy and Enron held all the aces and could charge what they wanted to the utilities.  Result: bankruptcy across the board for the utilities, an Austrian immigrant body builder took over as the Governator in a recall election.

Deregulation didn’t work for electricity for a number of reasons in my opinion.

  • First, the system was built over many decades on a monopolistic, captive consumer, model.  The cost to enter the market as a provider is huge, at maybe a billion dollars for a 500 MW plant.  Smaller plants would be more costly per unit output. …not exactly like starting a coffee joint.
  • It’s instantaneous production and sale, which means producers can charge the same price – so who would build peaking plants, when base load plants can charge the same as plants that are used much less often?
  • The entire economy was built on consistently low-cost power and therefore the “strike price” (say uncle) would be much higher because power is THAT important to doing business.
  • Finally, generators can’t just pick up and move to where demand is highest.  If generators could package their kWh in six packs, cases, or in bulk quantities to distribute to retailers, grocery stores, drug stores, convenience stores, and for consumers to take home and use as needed, deregulation of electricity would work.

Like all these half baked efforts from child stuntmen to electricity deregulation, end users can’t half do an energy efficiency project and expect decent results.  You can’t replace an HVAC system and put in crap for controls or not commission the system and expect results.  You can’t put in a completely different but proven refrigeration system, skip design review by the EE consultant, skip VFDs, skip heat recovery, and skip functional testing of the system and expect more than barely perceptible impacts.  End users may spend 20% extra to implement a new concept but skip the 1-2% needed to make sure it really works and another couple percent on enhancements to capture much of the savings.

This presents a major untapped opportunity with EE programs.  The above refrigeration case was for new construction.  Based on experience in several new construction programs providing services, evaluating programs, and doing retro-commissioning after the fact, I conclude new construction programs generate very little return on program dollar.  The “savings” are relative to essentially an arbitrary baseline.  But what is the market doing all by itself?  Actual attributable savings are relative to what the market, not a consensus reference point developed for something else (energy codes, which aren’t enforced anyway).

We will be doing a new construction market baseline study as part of a major utility program evaluation this summer.  I’ve been in this business long enough to bet a lot of money that most “savings” associated with new construction programs are happening anyway in absence of any program.

So what should programs be doing?  Burn down the house and start over.  Erase 70 years of one bad idea piled on another and start from scratch with a clean slate.  Rather than nibbling around the edges with some stupid occupancy sensors, daylighting sensors, extra insulation, and an efficient chiller (all of which are good but very limited ideas), develop means to completely raze and rebuild (pun intended) building and system designs.

Look, A&E firms are reticent to incorporate changes that make a difference.  Once an A&E team has been selected, they will want to charge exorbitant prices to make significant changes.  To some degree, I don’t blame them.  They charge double in part because of fear of the unknown and in part because they don’t want to do it.  It’s also due to the cheap and crappy market that consumers have been demanding for decades.  They don’t get paid enough to change and programs can’t afford meaningful change either.

Buildings need to be built with systems that are much simpler, low cost, and inherently difficult to dork up.  I have little to no doubt that we can develop a refrigeration and HVAC systems for grocery stores that will reduce energy consumption by about 40% compared to today’s status quo, for both gas and electricity.  The systems would be simpler, with fewer compressors, fewer condensers, fewer fans, less piping and less refrigerant loss.  It would be rugged and difficult to screw up.  If stores were built with this design en masse they would cost no more than the crap that goes in them now.  How?  Because of the simplicity.  Think of it this way.  Look at the power transmission systems built in the 1960s and earlier.  The towers are built as trusses with a bazillion small pieces of iron all bolted or riveted together with a bazillion times 100 fasteners.  What are they made of now?  One giant hunk of steel containing probably no more steel than the old ones.  They are cheaper to build, transport, install, and maintain, and they are probably stronger than the over-designed kludges of the past.  I’m saying something very similar can be done with building design.  

And you can’t develop the concept, hand it over to a contractor and not look at it again until the non-performing results start to come in.  It has to be shepherded through the design/development and commissioned.  THIS is what new construction programs ought to be doing.  But it takes a customer that wants to hit the ramp at full speed, and quit nibbling a little here and a little there with some LED lights and super duper low-e windows and a white roof.

Soon, we will be releasing a white paper that discusses the evolution, or I should say devolution of building design over the past 100 years, and what I am promoting going forward.  Get ready for that.


In an update on A Frivolous Novelty, the all-electric Nissan Leafs are flying off lots at the brisk pace of about 70 per month.  No need to check the decimal point.  That is correct.  About two or three per day, worldwide.  The average Nissan dealer probably sells two Altimas per day, by noon.  Save yours today!

written by Jeffrey L. Ihnen, P.E., LEED AP

Dumb Bears

15 02 2011

A senior sales director for MXEnergy, “the fastest growing natural gas and electricity retail provider” states, “As we observe the unrest in Egypt and other parts of the world, we recognize the volatility of the natural gas market.”  What?  He like many others “on both sides of the aisle” use the Middle East and our real dependence on foreign to twang the audience’s emotional strings.

The goings on in Egypt will have nearly zero affect on natural gas prices here in the mainland, U.S.  Why?  Because nearly all of our natural gas is produced here and we import from hostile regimes like Canada.  LOL!  The guy is using Middle East unrest and the threat of rising oil prices to translate to high gas and electricity prices here at home.  I think renewable energy at maybe 1-2% of our electricity supply may produce more electricity than oil does.  C’mon.  Don’t feed me this bull dung.

Then there is Al Gore’s movie the inconvenient truth, lower case on purpose.  The movie is one giant tug at the heart strings with flooding, starvation, cuddly polar bears dying.  In reaction to the movie, the president at Veriform, a steel fabricator, was so moved by the film he reduced his energy bills by 58% by investing $46,000 to save $90,000 annually.  Something tells me there is a little bit of number manufacturing and/or trickery going on here.  This leads the reader to believe that $90,000 is the 58% but it’s a little hard to fathom a steel fabricator with a $160,000 annual energy bill.  And what was the guy doing before?  Heating his facilities with electricity with all the doors and windows open?  He saved this with lighting, heating controls (e.g., thermostats?), and insulation?

One time we had a coworker of my wife’s over for a cookout and he was describing a program on Discovery Channel, if I remember correctly, that chronicles a polar bear that starves to death.  So I mentally roll my eyes and think, I’ve got to see this program.  The next day or next week I tuned in watching the polar bear swimming around in open water, jumping in, climbing out, jumping in, swimming, and at the end he’s on an island with nothing but gigantic walruses, the things with 18 inch tusks.  These things are too huge for a polar bear to take down.  They have skin an inch thick and about three feet of blubber.

The bear is after the cub, calf, pup, piglet, baby, squab or something like that – the little ones.  But the five ton adults are pig piling the little guy like a loose ball at the line of scrimmage in an N.F.L. game.  The bear is jumping on the backs of these school-bus size blubber bags – like a guy trying to tackle a Clydesdale.  He of course gets nowhere and walks away with a dejected look with sad music and depressing voice over.  Who knows if the bear actually died or they just made up the whole story fabricated from lost footage of Mutual of Omaha’s Wild Kingdom, with Marlin Perkins.

The conclusion: global warming was destroying the habitat of the bear’s favorite food, seals, and therefore, the gasoline you are releasing into the air when driving your car, killed the bear in the film.  My conclusion: assuming the bear really starved, what a dumb bear that doesn’t know how to hunt.  What about the seals that were spared?  Somewhere a bunch of seals that would otherwise be dead are basking in the sun.

Back to Al Gore’s film.  When I first saw the film’s promotional poster (you can get an eleven by seventeen keepsake for fifteen dollars) I immediately thought this is fitting and wonderfully ironic.  If you know anything about the weather at all – anything, you know low pressure systems, hurricanes, snow storms, rainstorms, and tornadoes spin counterclockwise in the northern hemisphere.  Yet the hurricane cartoon on the movie poster spins clockwise.  Chances this was intentional to represent a storm in the southern hemisphere: 0%.  All credibility: gone.  If this had one bit of “scientific” “peer review” (aka like-minded conspiring), why couldn’t anybody see this?  Al Gore won an Oscar and a Nobel Peace Prize, while the U.K. has all but banned the film for being full of bull dung.

We don’t need these convenient lies.  Get it?  To sell energy efficiency.  Exaggerating, embellishing, and just plain manufacturing facts catch up with you.  This, like climate gate, does our industry no good.  Just the facts ma’am.


Lisa Jackson, EPA administrator, is convinced ever increasing regulation is going to be an economic boom.  Did you know every dollar the EPA levies in regulation returns $40 to the economy?  Wow!  What is the ticker symbol?  I’ll margin my account to the max.

Saying these regs will be a net job generator is ludicrous – like the breaking windows to put people to work parable.  That’s exactly what this is.  Just look at this report, and specifically page 7.  Where is the higher cost of energy factored into the equation?  Somebody has to pay for all this stuff.  Higher energy prices are like higher taxes.  The more that is spent on energy, the less there is left to buy goods and services – that are provided by workers, formerly located in the United States.  This doesn’t even pass the laugh test.

written by Jeffrey L. Ihnen, P.E., LEED AP

Freeloaders and Geniuses from the Universe Next Door

19 10 2010

You know what torques me off, or make that torques us off more than anything else?  I’m saving it for a future rant.  Stay tuned.

No really, it’s “prospective” clients, many times end users that have screwed up buildings beyond reproach or wasting energy as though they just want to release all the carbon locked up in fossil fuels and get it over with.  They ask for help but in no way intend to pay for it or take action for anything substantial.  We may have even demonstrated, clearly by benchmarking or other means with specific measures that they could make their utility shut down a 500 MW power plant if they would just do something.

But no!  They want to know something trivial like how much energy/money they’ll save with a system that will put unattended PCs to sleep and not mess with anything substantive.  Never mind every PC on the planet has this built in and it’s about as hard to negotiate as turning on the television.

They’ll ask how to catch a three pound shad when you have a loaded harpoon with a giant blue marlin at point blank range (just go with the metaphor even if it is totally absurd).  Take the damn harpoon and shoot the thing, man!  Well gee, I just don’t know.  I haven’t used one of those things before.  I might shoot myself in the foot.  Is that tip sharp?  And they keep coming back for more panfish advice.

You may have spotted these people in public.  They go to the grocery store around noon Saturday to eat everything available for sampling, for their lunch, and probably leave with a half gallon of milk and a loaf of private label bread.  They sample six beers in a brew pub, order a can of Pabst and leave no tip.

And then there are those who believe the utility should pay for everything, and I mean everything.   We were working a school district for retro-commissioning and I believe they have some good opportunities, but when the board discussed it, a genius said, no.  He wanted the utility to build a remotely-sited wind turbine (because their location is lousy for wind energy) paid by the utility to generate electricity for their facilities and do it on a net metering sort of contract.  I am not kidding you.  Gee, that’s a great idea.  Let me get right on that.  I almost got brain damage from oxygen deprivation.  I was laughing so hard.  I’ve heard of customer entitlement mentality but this was from another universe.  How do you calibrate a customer like that to life here on earth?

We also have to beware of death by a thousand cuts.  A client may only want a half baked high-level assessment.  No matter how loud and clear we describe WHAT the project IS NOT, after we present the results that clearly meet the contract scope of work, some start asking for details on specific measures.  Where do I buy one of these?  Do you know any good contractors?  What capacity of doohickey do I need?  Some utilities, thankfully, are offering compensation to answer these sorts of questions.

Think of it this way.  If your house is a hog, it’s probably because it leaks like a sieve.  You can’t just take a couple tubes of silicon and slop it on some windows.  I know what I don’t know, and I know there are a boat load of places for infiltration/exfiltration to occur and like life in the commercial and industrial world, if you want results, you need to hire somebody who knows what they are doing.  I’ll pay a guy $500 to do it right before using a buffoon for free, any day.

NOTE: This is not a solicitation to weatherize my house.


Wall Street Journal readers responded to the source article from last week’s column.

Commenting on the letters, the National Resources Defense Council guy projects avoidance of 300 large power plants and $12 billion in annual savings.  In an Energy Brief a couple years ago, I projected 156 large power plants (500 MW apiece) and $9 billion in savings.  Close enough for hand grenades but I’m guessing he’s a little heavy on the power plants.  Is there diversity figured into his numbers?

Osram, a German company is retooling one of its American plants to manufacture efficient lighting.  Meanwhile, General Electric is whining that it has to close its last lighting plant in the U.S.  Jeffrey Imelt is a terrible CEO for GE.  General Electric used to be an entrepreneurial innovative company under Jack Welch.  Now it is a company in search of markets for status quo products and services, and government handouts.  If you don’t innovate you die in the private sector.  It matters not what you do.

One guy argues CFLs will require more heating energy consumption.  Yawn.  Fuel oil would be cheaper heat and if incandescent bulbs are such a great source of heat, what about summertime?  The electrical engineer makes good points that CFLs are not as bright as advertised.  We’ve always recommended CFLs at 33% the power, as opposed to 25%, of the incandescent being swapped out.  This is essentially the next size larger CFL than “recommended” in the business.

Another guy plays the mercury card.  Yawn.  I dismissed that fallacy in the same Brief.

written by Jeffrey L. Ihnen, P.E., LEED AP

From Jack Wagon to Hobo

31 08 2010

A couple weeks ago, the National Academy of Sciences released a study that summarized the findings of the general public’s perceptions of energy consumption and potential savings from various end-uses in their daily lives.  You can check out the curves in the linked article above and take my word for it or risk brain damage reading the thing.  To me there are several significant findings, none of which surprise me.  These are in no particular order and are only a subset of the findings.

  • Finding #1 – When asked open ended questions about ways to save energy, people overwhelmingly selected curtailment measures over efficiency.  Shut stuff off.  Unplug it.  Drive less.  Relax and take it easy (love that one but don’t watch a 56 inch plasma while lying on the couch).  Conserve energy – so the answer to “What is the single most effective thing you can do to conserve energy?” is conserve energy.  I think I would have yelled at them like the Geico drill sergeant.
  • Finding #2 – People can reduce energy consumption by 30% “without waiting for new technologies, making major economic sacrifices, or losing a sense of well-being.”  Well I don’t know about the “making economic sacrifices” part of this.  Viewing average residential end uses of electricity, the easy stuff is lighting and… lighting.  I don’t see anything else on there that doesn’t require sacrifice, more work, or spending a lot of money.  Lighting accounts for 15% of consumption.  Assuming this is all incandescent, replace it all with compact fluorescent for about 2/3 savings, or 10%.  We’re one third the way there.  Space cooling could be reduced a couple percentage points tops without sacrifice, well, make that 0% without sacrifice.  You would have to set your temperature up all the time.  Setting the thermostat up is going to save practically nothing because heat transfer due to temperature differences outside versus inside are relatively small.  Clothes dryers?  You would have to line dry.  That is a sacrifice if you ask me.  The rest you are either going to be able to do very little or a bunch of nickels and dimes will add up to a few percentage points.The only way to get to 30% is to select efficient equipment when replacement is needed anyway.  Throwing away a working furnace and air conditioner with efficient models won’t pay for itself.  Spending extra for an efficient model when you need a new one anyway will.
  • Finding #3 – Turning off the lights when leaving the room is considered by the general public to produce attractive savings.  The paper says there is actually very little savings from this.  Hide the kids and maybe the spouse too!  I’m not buying this one.  The study is 25 years old coincidently.
  • Finding #4 – People relate to curtailment, using things less more than using efficient stuff by a margin of 5:1.  The top three items are turn off the lights, conserve energy (and call the sergeant), and drive less.  If you’ve ever thought of it, efficient vehicles are more efficient, all else equal.  The Mini Cooper get’s great mileage, comes with leather seats, manual transmission, and is one of the best resellers on the market.
  • Finding #5 – People do not understand which things in their home are energy hogs.  They are fairly accurate with light bulbs, stereos, and computers and they actually think laptops use as much as a desktop.  My laptop uses about 25W.  You can barely read the paper by a 25W compact fluorescent light.  What cracks me up is they think the central air conditioner and electric clothes dryer uses only about two or three time more energy than the laptop!  You see that huge hulking plug for the dryer?  The reality is the dryer uses about 100x more energy.
  • Finding #6 – Tuning up your car twice a year saves 100 times as much energy compared to driving 60 mph rather than 70 mph for 60 miles.  First, this is misleading.  My car wouldn’t even use two gallons in that distance for either speed.  Second, who tunes up a car?  That’s from the 1970s and earlier when engine control was mechanical.  Everything is digitally controlled nowadays.  It works or it doesn’t.  I haven’t “tuned up” my car in the seven years I’ve owned it and it gets 34 mpg now like it did when it was new.  Change air filters and keep the tires a few psi below the maximum shown on the sidewall.
  • Finding #7 – People think a truck uses as much energy to move freight as a train does when in reality trucks use about 20 times as much per ton-mile.  This magnitude surprises me.  What’s the difference?  Rolling resistance.  Trains have almost none while trucks have a lot.  The rest is mainly drag and I’m sure stop and go traffic is a killer for trucks as well.  Airplanes use roughly 200 times more than rail.  Is buying carbon credits getting expensive to buy off your guilt for taking an airplane? – Become a hobo.  And isn’t the checked-bag charge for flying stupid?  Shouldn’t people be charged or not based on their weight plus that of all their crap?
  • Finding #8 – A virgin glass bottle doesn’t require a whole lot more energy than a recycled one but the public thinks it does.  My guess is recycling plastics doesn’t save a lot of energy either.  I would also guess recycling paper saves more, somewhere between aluminum and glass or plastic.  Not generating garbage for the landfill is as important as the energy savings to me.

One conclusion out of all this is we need to do a better job of informing end users that saving energy doesn’t mean freezing in the dark or taking a shower once a month.  I would say these concepts apply at least ten times more for commercial and industrial energy efficiency.  There is all kinds of waste in these facilities that do zero to provide better anything.

written by Jeffrey L. Ihnen, P.E., LEED AP

Get a Grip

10 08 2010

As you may have heard, this year China powered past (cheesy pun warning) the United States in total energy consumption.  Apparently, back in 2007, they surpassed the US in carbon emissions.  This makes sense as almost 70% of China’s electricity is derived from coal as compared to just under 50% in the United States.  In the U.S., nuclear and natural gas make up most of the other 50%, roughly split evenly with renewable energy rounding out the 100%.

In recent years, or especially since President Obama moved into the White House, there have been multiple verbose incomprehensible cap and trade policies drafted, but they are dead for now.  By the way, I maintain my position that substantial nationwide carbon limits are not going to happen in my lifetime.  If it didn’t happen since Obama took office with a filibuster-proof senate and a large majority in the house, it ain’t going to happen anytime soon.  Why?  Democrat senators from Midwestern states where coal is still king (not that this is a good thing) and coal producing states like West Virginia result in filibuster, if not an outright minority.  E.g., Jay Rockefeller will vote party line on everything but carbon caps.

There remains one possibility, however – that carbon caps may be legislated through the courts, which of course is not how things, especially major things like this, should become the law of the land.  In one example, the EPA in 2007 was handed the power to regulate carbon dioxide because it is a “pollutant” per the clean air act.  Again, this is like declaring water, another vital molecule that makes biological life possible, a pollutant because water kills.  Recall, I wrote on the blog a few weeks ago you can die by drinking too much water.  People drown, to the tune of 400,000 deaths worldwide each year[1].  Floods devastate communities – at least $3 trillion per year[2].  Water causes lightning, which kills about 24,000 per year[3].  And heat wave deaths – always have a large component of high humidity.  Aside from illegal activity (human smuggling), when was the last time you heard of heat related deaths in Arizona?  You don’t.  It’s Chicago, Memphis, New Orleans, Kansas City, Little Rock.  Water is dangerous.

You may be thinking, there’s nothing we can do about water.  Really?  How about banning swimming in rivers, lakes, and oceans and slapping $1,000 fines on people for not WEARING their floatation devices?  Move everything out of the 500 year floodplain.  Mandate air conditioners for every household and if you can’t afford one the federal government will provide one.  Sound familiar?  Thousands of lives would be saved per year.

The bottom line is, 98% of legislators are too cowardly to vote for the right thing, or wrong thing I guess, if it threatens their political career.

Sorry.  I got way off track.  I can’t help but railing against the preposterous.  Life has risk.  Is there anything, ANYTHING, worth doing if there is no risk?  There are costs and there are benefits.

Back to China.  China’s energy consumption has DOUBLED in the past 10 years while the United States’ energy consumption has decreased slightly.  For all intents and purposes, it’s been flat.

Here is something that will knock your socks off – since 1999, China has installed 416 gigawatts of coal-fired power plants.   “So what?”, you may be thinking.  A gigawatt is like a trillion dollars.  To give that perspective, a trillion dollars in $100 bills wouldn’t fit in a three car garage, tightly packed and stacked to the rafters Likewise 416 gigawatts can be generated by 832 large 500 megawatt power plants or 208,000 wind turbines by nameplate capacity.  This is eighty giant coal-fired power plants per year!!  And they have 330 more giant power plants on the drawing board.  Over the same period, the United States has built coal plants totaling 12 GW, or a measly 24 giant power plants.  China is averaging 80 per year, while the U.S. is averaging 2.4 per year.  GET A GRIP!

This is like giving Lance Armstrong a two day lead in the Indy 500 with his bicycle (he would be the US) but China has just taken the lead with the typical 225 mph Indy car.  It’s actually worse than that. It’s more like me running the Indy 500 versus the 225 mph Chinese Indy car passing me by.

In 2006, China generated as much electricity from coal as did the United States.  At the time they had 484 GW of operational coal plants.   Very roughly, they’re adding 10%, at least per year.  This blistering pace will fade with time, but it is fair to say they will have double the coal-fired electricity generation compared to the U.S. within 5 years.

Conclusion:  If we are truly concerned about carbon emissions and climate change, China has to do something.  The reality however is that whatever the U.S. can stomach will be of zero consequence considering the Chinese Indy car.  Unlike the floating continents of garbage that is choking the mighty three gorges dam and the 100 tons of benzene spilled in the Songhua River, carbon dioxide makes its way around the globe.  It doesn’t matter where it comes from.




written by Jeffrey L. Ihnen, P.E., LEED AP