Nicht Tee Kugel, Dos

8 03 2011

This week I am testing an additional medium for the The Energy Rant; the cartoon.  Click here to try it out.  Send email comments with your thoughts regarding this mechanism to me at jli@michaelsenergy.com.

Major barriers to EE for large commercial and industrial end users include;

  • Lack of time
  • Lack of expertise
  • Lack of capital
  • Risk aversion

If you don’t think end users are short on availability, just ask them.  Most end users don’t have time to commit to energy efficiency projects and most of the rest think they don’t have time.  The ones who really don’t have time get seven paid holidays and two-three weeks vacation while the latter group gets eleven paid holidays and six weeks vacation, if you know what I mean.

Most commercial building owner/occupants think of lighting retrofit, adding roof insulation and replacing windows or maybe replacing a boiler they think is 60% efficient.  Lighting may be ok but the rest of this stuff is almost always going to have a negligible impact on energy consumption.  Efficiency to most industrial end users means, just keep it rolling – widgets per shift, less maintenance.  Many times increasing widgets per shift and reducing maintenance is accompanied by energy efficiency, especially when EE is the primary reason to do project.  However, there are bails of cash on fire in many places that are invisible to folks who focus solely on keeping things going.  In other cases, we’ve seen industrial end users think they’re going to meet their 10% reduction goals by turning lights off.  Pssst.  Your lights only consume 4% of your energy bills.

Not enough money.  I’ve investigated commercial real estate from both an owner’s and leaser’s perspective.  The owner makes the tenant pay the utility bills in many/most cases, so there is little incentive for the owner to do anything.  The tenant’s perspective is “I have a three-year lease, this isn’t my building, and I don’t even know if I’ll be here after three years.”  For industrial end-users, capital is very precious and can take force majeure to get.

Then there is a real risk that savings won’t transpire as indicated.  Lighting is about the only measure customer’s can count on with high probability.  This is unfortunate because it doesn’t need to be that way.  It’s just that there are a lot of schlocks who make assumptions like an old boiler is 60% efficient.  As my boss says, if a boiler is really 60% efficient, turn and run as fast as you can because it may be about to blow.  We’ve seen schlock estimates indicating over one therm per square foot savings by adding insulation.  You might achieve these savings if one of the walls on your facility was missing prior to implementation.

Now we arrive at the subject of this week’s rant: efficiency bid programs.  We see a lot of efficiency bid programs, some of which are delivered by clients of ours.  They are typically an alternative to conventional custom efficiency incentive programs provided side by side.  They work like this: develop a project with cost and savings estimates and submit a proposal to the utility for an incentive.  The incentive is always greater than the standard custom efficiency incentive or why bother with the development and bid?  The program is purportedly competitive – i.e., a “free market” for incentives to maximize bang for the program buck.  If it’s competitive, somebody must lose.  This isn’t tee ball.

I cannot see how these programs don’t get slaughtered in a net to gross analysis.  Net savings are actual savings attributable to the program.  Gross savings are actual savings, period.  What’s the difference?  Net includes the effects of the program.  Did the program influence the customer’s decision to move forward with an EE project?

Let’s get back to the barriers now.  Time.  It takes just as much time for a customer and a contractor and/or consultant to develop the project for bid as it does to develop the project for a standard incentive.  And it takes more time to shepherd the thing trough the bid process.  Efficiency bid takes MORE time.  Which leads me to…

Risk.  As mentioned, there is risk the project won’t generate savings because the energy analyst is a schlock.  But for efficiency bid, there is risk, presumably, that there won’t even be an incentive after thousands of dollars are spent developing the project.  Remember, if this program is competitive, somebody loses.  Who is going to spend gobs of time not knowing whether they will get an incentive?  If the standard custom efficiency incentive is the consolation prize and it’s enough for a “go”, then why would the program waste money on a premium efficiency-bid incentive?

True story, last week we considered pursuing one of these bids for an industrial customer for which we had done a study.  We decided against it because (1) we only had a month to get it submitted and in that month you need to get the customer on board and a month is a nanosecond for a capital intensive corporation to allocate (2) extremely scarce capital, and therefore, (3) it was too big a risk for even us, the consultant, to get the whole thing pulled together in a month, at the mercy of the corporate bean counters.  There is far too little upside for our risk of getting something we have almost no control over to happen.

Somebody has to lose if this is competitive.  Most likely only the biggest customers are going to pursue these projects.  A major customer spends a bunch of time to put a bid together and then is told, sorry, you lose.  Now the utility is faced with a colossal PR disaster with a major customer that will raise Cain all the way to PSC’s office.  OR, the customer takes the standard custom incentive as a consolation prize, in which case the whole bid thing was a ruse to get extra program money – a free rider.

These efficiency bid programs probably look great on the surface but if one really understands market barriers and how large end-users allocate and budget capital, it seems like a big free rider program to me.  They take more time, not less.  They add risk rather than decrease risk.  They potentially provide more capital assistance, but at what I see is a disproportional addition of risk.

Tidbits

  • Ameren Missouri says they will pare back EE programs because they are costing shareholders return on investment.   Wow – although I consider it unfortunate, it’s understandable and refreshing to some degree to get straight talk from a utility that actually believes this.  I think a good portion of utilities really think this way but lead on as though they are saving the universe.   Do what it takes to look good to the regulators but with minimal real impact.  Come to think of it, these utilities may be like The Firm.  Once a partner in the EE programs and made aware of the scam, you’re stuck unless you want your car to accidently explode when you leave for home.  BTW, programs can be developed for utilities to make money on EE.  Just call 608.785.1900.
  • Don’t look now, the Chevy Volt has even less than the advertised 40 mile battery range – like about 40% less during cold weather as batteries don’t work well in cold weather.   Not only that, as mentioned in “A Frivolous Novelty” it takes about 5 kW to heat the cabin of the vehicle.  I “mistakenly” thought this was a big deal.  Not really.  At about 0.5 mile/kWh, the battery juice is consumed in less than a half hour.  That’s 50 kWh for 25 miles of driving but only 2.5 kWh for heating.  Who is going to pay $40,000 to be limited to 25 miles between charging?  Raise your hand.  Not all at once, it may make the planet wobble.
  • In one last bit of refreshing honesty, this guy provides a good assessment of plusses and minuses of the ban on the standard incandescent lamp:   Good assessment – far above average for that matter.

written by Jeffrey L. Ihnen, P.E., LEED AP

Advertisements




Decoupling, Stupid

16 06 2010

One way the utility business works like the rest of the economy is that it sells its products/commodities at a price that is higher than the cost of production, on average.  The more utilities sell, the greater their gross profit.  This is at odds with utilities’ incentive to save energy with energy efficiency programs.  As a result, some utility executives are opposed to energy efficiency programs.  That is a short-sighted view but that’s a story for a different day.

As a result of this dichotomy, a pricing mechanism known as decoupling has been developed.  This NREL paper gives a pretty good overview.   It says simply that “Decoupling is a rate adjustment mechanism that breaks the link between the amount of energy a utility sells and the revenue it collects to recover the fixed costs of providing service to customers.”  There are a number of specific ways to do this, some of which are described in the NREL paper, but the bottom line is utilities are less reliant on sales for their well being.

This may seem like an ingenious idea, but I see a lot of significant, if not major hang-ups.  One of the benefits is reported to be price and revenue stability.  But here’s the problem as I see it: revenue stability equals profit volatility.  Take the lousy economy we’ve had the last couple years.  Utility sales are way down but the utility keeps collecting bills that are closer to the long term averages, which means prices increase (if I know math, and I think I do).  They are selling less but there is this decoupled “fixed” cost pasted to customers’ bills.  Good for them.  What about the customers?  They are cutting back on everything due to wage pressures, layoffs, production cutbacks, and lower profits.  So what do they get in return?  A higher energy costs per unit purchased, just what they don’t need.

The opposite is also true.  Say we get a really hot summer.  Now the utility has to sell, and generate or purchase a lot more energy.  In this case, a lot might be 10% more, but that has a huge effect on price.

I just watched a demand response webinar.  Demand response incentivizes customers to cut back during peak periods when energy costs are very high because everything but homeowner’s Honda generators are putting power on the grid.  One way to deliver demand response is to pass the cost of putting the last kilowatt of power on the grid.  I don’t know where the last kW comes from for sure, but it’s way expensive and for good reason.  As full capacity is reached, power generators (companies) either charge the arm of your first born or we get brown outs.  So when the utility passes this cost to the customer the cost is huge, like 5-10 times normal cost.  Peak power is very expensive.

Back to the hot weather.  Now the utility has to sell all this really expensive electricity with less ability to recover (1) the extra high price of electricity and (2) the larger volume of energy delivered.  I suppose if you have real-time pricing described above, this will be mitigated.  But many states including MN and WI have decoupling pricing mechanisms in place, but practically no demand response or real time pricing.  The decoupling in MN and WI is news to me, but if NREL says so, it must be true.

So it seems to me that decoupling presents at least as many and as big of problems as it solves.  Did Washington come up with this?

When I interview with job candidates I usually explain the utility market and why energy efficiency programs are implemented –to keep costs down by delaying or avoiding the construction of power plants, poles and wires.  Again, it seems to me decoupling is at odds with this because the intent is to protect revenue, not prices.  If you protect revenue the “societal” benefits would seem to be lower to me.

In general, not just talking about utilities, decoupling supply and demand is a horrible idea.  Despite all the political bomb throwing regarding healthcare, the number one cause of soaring healthcare costs, which continues to go unaddressed, is the decoupling of premiums and services rendered.  For decades the system worked like this: pay a flat rate and consume all you want.  It doesn’t take a genius to predict what will happen.  In California, they kinda sorta deregulated the electricity market last decade.  They decoupled generation from delivery, deregulated wholesale prices for the utilities but capped consumer prices.  Result: utility bankruptcies and the Governator in a recall election.

I am not saying decoupling is going to result in any sort of disaster like these examples, but messing with Econ 101 supply and demand is almost never a good idea.  If we want to protect revenue, why not just build it into the rate case.  Societal benefits may take the same hit, but at least customers pay for what they consume, “real time”.

If we want to control consumption and keep prices in check, we need all the market effects of supply, demand, and pricing that we can get.  A complete free for all would go too far for a bunch of reasons I’ll save for another day, but we need more pricing response, like demand response described above, not less.

written by Jeffrey L. Ihnen, P.E., LEED AP